Quarterly (March, June, September, December)
160 pp. per issue
6 3/4 x 10
2014 Impact factor:

Computational Linguistics

Hwee Tou Ng, Editor
June 2010, Vol. 36, No. 2, Pages 203-227
(doi: 10.1162/coli.09-036-R2-08-050)
© 2010 Association for Computational Linguistics
Sorting Texts by Readability
Article PDF (1.14 MB)

This article presents a novel approach for readability assessment through sorting. A comparator that judges the relative readability between two texts is generated through machine learning, and a given set of texts is sorted by this comparator. Our proposal is advantageous because it solves the problem of a lack of training data, because the construction of the comparator only requires training data annotated with two reading levels. The proposed method is compared with regression methods and a state-of-the art classification method. Moreover, we present our application, called Terrace, which retrieves texts with readability similar to that of a given input text.