Monthly
288 pp. per issue
6 x 9, illustrated
ISSN
0899-7667
E-ISSN
1530-888X
2014 Impact factor:
2.21

Neural Computation

September 2014, Vol. 26, No. 9, Pages 2052-2073
(doi: 10.1162/NECO_a_00620)
@ 2014 Massachusetts Institute of Technology
A Bayesian Model of Polychronicity
Article PDF (721.55 KB)
Abstract

A significant feature of spiking neural networks with varying connection delays, such as those in the brain, is the existence of strongly connected groups of neurons known as polychronous neural groups (PNGs). Polychronous groups are found in large numbers in these networks and are proposed by Izhikevich (2006a) to provide a neural basis for representation and memory. When exposed to a familiar stimulus, spiking neural networks produce consistencies in the spiking output data that are the hallmarks of PNG activation. Previous methods for studying the PNG activation response to stimuli have been limited by the template-based methods used to identify PNG activation. In this letter, we outline a new method that overcomes these difficulties by establishing for the first time a probabilistic interpretation of PNG activation. We then demonstrate the use of this method by investigating the claim that PNGs might provide the foundation of a representational system.