Effects of cooperative and competitive coevolution on complexity in a linguistic prediction game

Conference Date
Lyon, France
Date Published
September 2017
Conference Date: 2017, Vol. 14, Pages 298-205.
(doi: 10.7551/ecal_a_051)
© 2017 Massachusetts Institute of Technology Published under a Creative Commons Attribution 4.0 International (CC BY 4.0) license
Article PDF (1.03 MB)

We propose a linguistic prediction game with competitive and cooperative variants, and a model of game players based on finite state automata. We present a complexity metric for these automata, and study the coevolutionary dynamics of complexity growth in a variety of multi-species simulations. We present quantitative results using this complexity metric and analyze the causes of varying rates of complexity growth across different types of interactions. We find that while both purely competitive and purely cooperative coevolution are able to drive complexity growth above the rate of genetic drift, mixed systems with both competitive and cooperative interactions achieve significantly higher evolved complexity.