Towards making a cyborg: A closed-loop reservoir-neuro system

Conference Date
2017
Location
Lyon, France
ISBN
978-0-262-34633-7
Date Published
September 2017
Conference Date: 2017, Vol. 14, Pages 430-437.
(doi: 10.7551/ecal_a_072)
© 2017 Massachusetts Institute of Technology Published under a Creative Commons Attribution 4.0 International (CC BY 4.0) license
Article PDF (1.81 MB)
Abstract

The human brain is a remarkable computing machine, i.e. vastly parallel, self-organizing, robust, and energy efficient. To gain a better understanding into how the brain works, a cyborg (cybernetic organism, a combination of machine and living tissue) is currently being made in an interdisciplinary effort, known as the Cyborg project. In this paper we describe how living cultures of neurons (biological neural networks) are successfully grown in-vitro over Micro-Electrode Arrays (MEAs), which allow them to be interfaced to a robotic body through electrical stimulation and neural recordings. Furthermore, we describe the bio- and nano-technological procedures utilized for the culture of such dissociated neural networks and the interface software and hardware framework used for creating a closed-loop hybrid neuro-system. A Reservoir Computing (RC) approach is used to harness the computational power of the neuronal culture.